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Abstract
We derive a general expression for the gauge invariant mass (mG) for an Abelian
gauge field, as induced by vacuum polarization, in 1 + 1 dimensions. From
its relation to the chiral anomaly, we show that mG has to satisfy a certain
dynamical quantization condition. This quantization can, on the other hand, be
explicitly verified by using the exact general expression for the gauge invariant
mass in terms of the fermion propagator. This result is applied to some explicit
examples, exploring the possibility of having interesting physical situations
where the value of mG departs from its canonical value of e2

π
for a single

massless Dirac fermion in 1 + 1 dimensions. We also study the possibility of
generalizing the results to the (2 + 1)-dimensional case at finite temperature,
showing that there are indeed situations where a finite and non-vanishing gauge
invariant mass is induced.

PACS numbers: 11.15.−q, 03.70.+k, 11.10.Lm

1. Introduction

Some important physical quantities displaying quantization properties, may sometimes be
represented by means of momentum space integrals which exhibit their topologically invariant
character. Considerable effort has been devoted to find these representations, since they are
often very useful to prove their quantization, as well as their stability under perturbations.

This is the case, for instance, of the transverse conductivity σ in QED3, which can be
represented as a momentum space integral given by [1, 2]

σ = 1

3!
ie2εµνρ

∫
d3p

(2π)3
Tr[∂µS−1S∂νS

−1S∂ρS
−1S] (1)

where S(p) is the full fermion propagator. As shown in [1], due to the ultraviolet behaviour
of the fermion propagator, this integral reduces to the Kronecker topological invariant which
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labels the homotopy classes in �2(S
2), that is, σ is quantized. A similar representation

for the induced Chern–Simons coefficient has been obtained in [3] by using a cubic lattice
regularization for the Euclidean fermionic action. In this case, the possible values for the
Chern–Simons coefficient turn out to be labelled by the winding number characterizing
the mapping between the three-dimensional torus in momentum space and the normalized
quaternion corresponding to the fermion propagator: S(p)/

√
det(S).

Topology in momentum space has also been advocated in [4], in order to discuss the
stability of neutrino masses in the standard model and the spectrum of excitations in effective
two-dimensional models such as helium-3. On the other hand, in the context of Yang–
Mills theories, one of the main open problems is that of understanding the non-perturbative
generation of a mass gap for the gauge fields as a consequence of the dynamics in the infrared
regime. This problem is of crucial importance for confinement in QCD, and for analysing
finite temperature effects. For instance, in [5], a gap equation, based on the introduction of
gauge invariant mass terms, has been proposed and applied to the Yang–Mills theory in 2 + 1
dimensions.

The aim of this work is to obtain a useful momentum space representation for detecting the
existence of an induced gauge invariant mass (mG) for an Abelian gauge field. In particular,
we shall be able to derive a general expression formG, valid for different spacetime dimensions
and geometries in momentum space.

This paper is organized as follows. Section 2 is devoted to a short review of the well-
known relationship between the induced gauge invariant mass and the chiral anomaly in 1 + 1
dimensions. In section 3, a general momentum space representation for the induced gauge
invariant mass is provided. Section 4 is devoted to the applications of the aforementioned
representation to the case of square lattice geometry and to the case of finite temperature in
2 + 1 dimensions. Section 5 presents our conclusions.

2. Relationship between the gauge invariant mass and the chiral anomaly in 1 + 1
dimensions

By gauge invariant mass, mG, we understand the value of the constant appearing in a gauge
invariant mass term for an Abelian gauge field. In (d + 1)-dimensional Euclidean spacetime,
a gauge invariant mass term Lagrangian Lm is given explicitly by

Lm = 1
2m

2
GAµδ

⊥
µνAν (2)

where δ⊥
µν = δµν − ∂µ∂ν

∂2 is the transverse Kronecker δ in D = d + 1 dimensions.
This mass term for Aµ is explicitly gauge invariant, although, of course, at the price of

introducing a non-locality in the action. That is often the reason for not including this term
in the classical Lagrangian of a standard local quantum field theory. In spite of this fact,
terms like this naturally arise when evaluating radiative corrections to the effective action. In
massless QED in 1 + 1 dimensions, i.e. the Schwinger model [6], it is induced by the one-loop
vacuum polarization graph. Moreover, for such a model, the one-loop result is exact, since it
does not suffer from higher order corrections. These results can also be shown to be related to
the chiral anomaly in 1 + 1 dimensions, whence the non-renormalization of mG is inherited.
For this model, the non-locality can be made good since, in the bosonization approach, the
gauge field may be written in terms of two scalar fields: Aµ = εµν∂νσ +∂µϕ. In terms of these
scalars, the gauge invariant mass term becomes a standard, local, mass term for the σ field.

In the (1 + 1)-dimensional case, the value of mG for a single fermionic flavour has the
well-known valuem2

G = e2/π . In this paper, we are interested in deriving general expressions
for mG, as a first step towards extending the useful (1 + 1)-dimensional result into several
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non-trivial directions. In order to define the problem more precisely, we write mG in terms of
the exact vacuum polarization tensor3 �̃µν(k). The Ward identity for �̃µν(k), kµ�̃µν(k) = 0,
allows us to write

�̃µν(k) = �̃(k2)δ⊥
µν(k) (3)

where �̃(k2) is a scalar function, and δ⊥
µν(k) = δµν − kµkν

k2 . Thus,mG may also be obtained as

m2
G = lim

k→0
�̃(k2). (4)

This definition implicitly assumes gauge and Lorentz invariance, two conditions that, except
for explicit indication to the contrary, shall be maintained in everything that follows.

We shall be first concerned with models that can be described by an Euclidean action with
the following structure:

S =
∫

dDxL L = LF + LG (5)

where LF and LG denote the fermion and gauge field Lagrangians, respectively.
Let us begin with a consideration of the (1 + 1)-dimensional case, in the simplest

non-trivial situation of massless QED(1 + 1). This will amount to a re-derivation of known
results, although we shall present them here from a different perspective. The gauge field
Lagrangian is

LG = 1
4FµνFµν Fµν = ∂µAν − ∂νAµ (6)

while fermionic matter is described by a massless Dirac field ψ , with a Lagrangian

LF = ψ̄( �∂ + ie �A)ψ (7)

where we adopted the conventions

(γµ)
† = γµ γ

†
5 = γ5 γµγν = gµν + iεµνγ5

gµν = δµν ε01 = +1.
(8)

The exact vacuum polarization tensor �̃µν is, as usual, defined in terms of the connected
gauge field two-point functionGµν by

〈AµAν〉conn = Gµν G−1
µν (k) = k2δ⊥

µν + �̃µν(k). (9)

It is easy to see that there is, indeed, a relation between mG and the chiral anomaly G(A),
since the former may actually be derived from the latter, at least for massless QED in 1 + 1
dimensions. To that end, we define G(A) by

∂µ
〈
J 5
µ

〉 = G(A) (10)

where
〈
J 5
µ

〉
denotes the quantum average of the axial current J 5

µ ≡ −ieψ̄γ5γµψ in the presence
of an external gauge fieldAµ (we use the scriptAµ notation to distinguish it from the dynamical
gauge field Aµ). Hence, the integrated form of the anomaly [7] is∫

d2xG(A) =
∫

d2x∂µ
〈
J 5
µ

〉 =
∫

d2xεµν∂µ〈Jν〉 (11)

where we used the relation J 5
µ = εµνJν , and Jµ ≡ eψ̄γµψ is the vector current. Then, from

our knowledge of the chiral anomaly, we may use the fact that G(A) is linear in A to adopt the
linear approximation for 〈Jν〉 in (11), namely

〈Jµ(x)〉 =
∫

d2y�µν(x − y)Aν(y) (12)

3 The tilde denotes the momentum space version of an object whenever it is convenient to distinguish it from its
coordinate space version.
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with �µν(x − y) denoting the coordinate space vacuum polarization function. It should be
noted that the �µν(x − y) appearing in (12) is exact, since only an expansion in the external
field has been performed.

Then, inserting (12) into (11) and Fourier transforming, we find that∫
d2x G(A) = lim

k→0
�̃(k2) lim

k→0
εµν ikµÃν(k) (13)

assuming that both limits exist. Taking (4) into account, this amounts to∫
d2x G(A) = m2

G(A) (14)

where (A) = ∫
d2x εµν∂µAν is the total flux of εµν∂µAν in Euclidean spacetime.

Equation (14) yieldsmG in terms of the anomaly. Of course, the left-hand side in equation (14),
being the spacetime integral of the anomaly, will have the form of a coefficient times (A),
namely ∫

d2x G(A) = ξ(A) (15)

thus the content of (14) is that the coefficient ξ = e2/2π gives precisely the value of m2
G.

Now, only configurations with e2(A) ∈ Z may have a finite action, and this implies that ξ
could have only been e2/2π or an integer multiple of this quantity, i.e.,

m2
G = k

e2

2π
k = 0, 1, 2, . . . . (16)

Equations (14) and (16) had not been, to the authors’ knowledge, previously derived in the
literature.

It must of course be possible to prove the quantization condition (16), starting from the
fermionic side of the problem. Indeed, this is the case for the one-loop approximation, since
we also know that, to that order, the integral of the anomaly is in fact the index of the Dirac
operator, namely∫

d2x G(A) = 1

2π
(n+ − n−) (17)

where n± denotes the number of zero modes of positive and negative chirality in the given
background. In our conventions, it is easy to realize that n+ − n− = e2(A).

In the case in which a current–current interaction is introduced, the corresponding effect
can be evaluated by means of the bosonization rules, which give

∂µ
〈
J 5
µ

〉 = e2

π + g
εµν∂µAν (18)

whereg denotes the current–currentcoupling constant. This relationship would imply, through
equation (14), a renormalized gauge invariant mass, in agreement with the result of [9].

Also, when the fermions are massive, the right-hand side of equation (10) has to be
supplemented with the additional term −2mψ̄γ5ψ coming from the explicit chiral symmetry
breaking. Accordingly, equation (13) reads∫

d2x∂µ
〈
J 5
µ

〉 =
∫

d2x (G(A)− 2m〈ψ̄γ5ψ〉) = lim
k→0

�̃(k2) lim
k→0

εµν ikµÃν(k). (19)

Due to the short-range behaviour of the massive Dirac fields, the left-hand side identically
vanishes, which together with equation (4) gives a zero gauge invariant massmG. In particular,
this implies that the contribution of the chiral anomaly cancels against that of the explicit chiral
symmetry breaking term [10].
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k k

p-k

νµ p

Figure 1. The exact vacuum polarization graph.

3. Momentum space representation for the gauge invariant mass

We try, in what follows, to use the fermionic point of view exclusively, in an attempt to derive
the previous results therefrom, without assuming that a loop expansion has been performed.
To that end, let us derive an exact expression for mG in terms of the fermion propagator. We
start from the (D-dimensional) general expression for �̃µν , as given by the Schwinger–Dyson
equations [8], which amounts to the diagram of figure 1, where the white circles show that the
lines are full fermion propagators, while the black circle represents the full vertex functions.
The external legs are, of course, to be truncated, but we have drawn them for the sake of
clarity. The analytic expression corresponding to figure 1 is

�̃µν(k) = −e2
∫

dDp

(2π)D
Tr[γµSF (p)�ν(p, p − k)SF (p − k)] (20)

where SF is the momentum propagator and �ν is the exact vertex function. Noting that �µν

may be expressed as in (3), we see that

m2
G = �̃(0) = (D − 1)−1 lim

k→0
�̃µµ(k) (21)

or

m2
G = −e2(D − 1)−1 lim

k→0

∫
dDp

(2π)D
Tr[γµSF (p)�µ(p, p − k)SF (p − k)]. (22)

Since the theory is gauge invariant, we may relate limk→0 �µ(p, p − k) to the fermion
propagator, by using the exact Ward identity

lim
k→0

�µ(p, p − k) = −i
∂

∂pµ
S−1
F (p). (23)

This identity may be used in (22) to obtain

m2
G = ie2(D − 1)−1

∫
dDp

(2π)D
Tr

[
γµSF (p)

∂

∂pµ
S−1
F (p)SF (p)

]

= −ie2(D − 1)−1
∫

dDp

(2π)D
∂

∂pµ
Tr[γµSF (p)] (24)

which is the most general expression we shall continue to work with. It should be noted that
(24) is still formal, in the sense that we have not yet made explicit any regularization method.

Before exploring its divergences in the general case, we note that, to one-loop order, they
are the well-known divergences in the vacuum polarization graph of figure 2.

In (1 + 1), the expression for mG suffers from both UV and IR divergences, as is clear
from (24), since, when applied to the free Dirac propagator S(0)F = −i�p−1, it yields

m2
G = −2e2

∫
d2p

(2π)2
∂

∂pµ

(
pµ

p2

)
. (25)
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k k

p

p-k

νµ

Figure 2. The one-loop vacuum polarization graph.

R

P

ε

Figure 3. The integration region for the integrals in (26).

In order to make sense of this expression, we exclude a circle of radius ε around the origin
of the momentum plane to avoid the IR singularity, and also use a Pauli–Villars regulator to
tame the UV divergences. This amounts to defining

m2
G = −2e2

∫
R

d2p

(2π)2
∂

∂pµ

(
pµ

p2

)
+ 2e2

∫
R

d2p

(2π)2
∂

∂pµ

(
pµ

p2 +�2

)
(26)

where R is the region illustrated in figure 3 and� denotes the mass of the regulator field. The
momentum P denotes the radius of the integration region and, of course, P → ∞ since the
theory is already regularized.

By a straightforward application of the two-dimensional Gauss’ theorem, we may convert
these integrals of divergences into fluxes of radial vector fields. This procedure yields

m2
G = − 2e2

(2π)2

[
−2π

ε

ε
+ 2π

ε

ε2 +�2

]
(27)

which in the ε → 0 limit becomes

m2
G = e2

π
(28)

as it should. The procedure we have followed has a simple electrostatic analogy: mG is
given by the integral of the divergence of an ‘electric field’, so by following this analogy it is
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proportional to the total ‘electric charge’. Because of the regulator, though, only the charges
at the origin are relevant; namely, the subtraction due to the UV regulator leads to

m2
G = ie2

(2π)2

∮
C(ε)

dl n̂µTr[γµSF (p)] (29)

where the integral is taken along a small curve of radius ε enclosing the origin. n̂µ denotes
the outer normal to C(ε). In what follows, we shall argue that this kind of expression can be
generalized to the full theory. Indeed, we can always say that the role of any UV regularization
will be to modify the large momentum behaviour of the propagator in such a way that all the
points with infinite momentum can be identified. For the Pauli–Villars case, this can be shown
to hold simply by combining the contributions of both fermion propagators into one integral,
to define a regularized propagator. Namely

m2
G = −2e2

∫
R

d2p

(2π)2
∂

∂pµ

[
�2

p2(p2 +�2)
pµ

]
(30)

which contains the divergence (in momentum space) of a vector field which decreases as ∼p−4

at infinity.
This will be one of the properties we shall demand of a regularization at any finite order of

the loop expansion, namely, the points at infinity in the momentum space may, from the point
of view of this calculation, be identified. The other condition is that, in the small momentum
region, i.e. momenta much smaller than the cut-off, the behaviour of the propagator should be
the same as for the unregularized propagator. Thus, only the small region around zero may
contribute. This, in turn, will produce a non-vanishing answer only when the field is massless,
as we shall see now.

Assuming a standard Dirac action for the fermions, the general form of the fermion
propagator in momentum space is, of course,

S−1
F (p) = iA(p) �p + B(p) (31)

where A and B are real functions that depend only on the scalar p2. Then an application of
(24) yields

m2
G = −ie2

∫
d2p

(2π)2
∂

∂pµ
Tr

[
γµ

A(p) �p
A2(p)p2 + B2(p)

]

= e2

(2π)2
Tr(I)

∮
C(ε)

dl n̂µ

[
A(p)pµ

A2(p)p2 + B2

]
(32)

where Tr(I) counts the dimension of the Dirac algebra representation. Evaluating the integral
along C(ε)

m2
G = e2

2π
Tr(I)

A(ε)ε2

A2(ε)ε2 + B2(ε)
. (33)

Since ε → 0, we may conclude from here that, if the fermion is massive, B(0) �= 0, then
mG = 0. This is indeed the case for the massive Schwinger model. Regarding the massless
case, we obtain

m2
G = e2

2π
Tr(I)

1

A(0)
= e2

2π
Tr(I) (34)

where we have used the normalization condition A(0) = 1, which holds at any finite order of
the loop expansion. This condition fixes the residue of the perturbative electron propagator
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at the pole p2 = 0. Strictly speaking, this normalization will change in an interacting theory.
Indeed, the fermion propagator can, in general, be rewritten using the spectral representation [8]

SF (p) =
∫ ∞

0
dµ2 −iρ1(µ

2) �p + ρ2(µ
2)

p2 + µ2
(35)

where ρ1 and ρ2 are real functions. It is then clear, by the linearity of this expression, that
there will be a finite gauge invariant mass if there is an isolated pole at zero momentum,
namely, if we can write

SF (p) = Z2
−ip

p2
+

∫ ∞

m2

dµ2 −iρ1(µ
2) �p + ρ2(µ

2)

p2 + µ2
(36)

wherem2 is the multiparticle threshold. In this situation, we would obtain

m2
G = e2

2π
Tr(I)

1

A(0)
= e2

2π
Tr(I)Z2 (37)

where Z2 is a constant, smaller than 1 because of the spectral condition

1 = Z2 +
∫ ∞

m2

dµ2ρ1(µ
2). (38)

Equation (37) may seem to contradict our remarks on the relation between m2
G and the

anomaly, for example, (16). The resolution of this apparent paradox is that the anomaly, as we
understood it in (10), is defined in terms of the divergence of the current. The matrix elements
of this current, when evaluated through the reduction formulae, will require the introduction
of a Z2 factor (Z1/2

2 for each fermionic field), thus the proper relation that generalizes (16) is

m2
G = k

e2

2π
Z2 k = 0, 1, 2, . . . . (39)

We wish to point out, however, that this equation may be of difficult practical application,
since it requires knowledge of the exactZ2. This exact constant is bounded by 1 but, as is well
known, it may be divergent and gauge dependent if evaluated at a given order in perturbation
theory. The possible gauge dependence of the exact Z2 is a subject that certainly deserves
further study and shall be discussed elsewhere. Of course, the ratio betweenm2

G and the exact
Z2 must indeed be gauge independent and quantized.

The original expression for mG required a regularization procedure in order to be well
defined. However, being determined by the low momentum behaviour of the propagator,mG
should be independent of the regularization. For example, for a generalized Pauli–Villars
regularization in the one-loop case, one might include a set of N regulator fields and define

S
reg
F (p) =

N∑
n=0

Cn
1

i�p +Mn

(40)

whereMn denote the regularizing masses, and the indexn = 0 is reserved for the unregularized
propagator, which has M0 = 0 and C0 = 1. The massesMn and the coefficients Cn for n > 0
are chosen in order to verify the desired behaviour in the UV. However, since only the
behaviour around zero momentum is relevant, and all the regulators are massive, then just the
unregularized massless propagator contributes.

4. Applications to different geometries and spacetime dimensions

4.1. The case of the (1 + 1)-dimensional square lattice

It should be clear from what we have said above that the geometry of the momentum space
is crucial in the problem of evaluating mG. An interesting example of this is the case of a
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lattice regularized theory. Indeed, assuming that the coordinate space has been discretized to
an (infinite) square lattice with lattice spacing a, the momentum space becomes a (continuous)
torus. The lattice points are then defined as the set of points σµ = atµ with tµ ∈ Z for
µ = 0, 1.

The naive (i.e. no Wilson term) lattice fermion propagator for a massive Dirac fermion
then becomes

SF (p) = a

iγµCµ(ap) + am
(41)

whereCµ(ap) = sin(apµ), and the pµ are continuous variables (because the lattice is infinite),
in the first Brillouin zone, namely

−π < pµ � π µ = 0, 1. (42)

Then, the expression for mG is

m2
G = −ie2

∫
B

d2p

(2π)2
∂

∂pµ
Tr

[
γµ

a

i �C(ap) + am

]
(43)

where B denotes the first Brillouin zone. The fact that we are dealing with a momentum torus
is obvious because of the periodicity of the functions Cµ, a property which is preserved of
course for more general propagators. But the functions Cµ will simultaneously vanish for the
(p0, p1) values in the set

{(0, 0), (0, π), (π, 0), (π, π)} (44)

which contains not just the origin, but also three other unwanted points. The behaviour of the
lattice propagator is similar for each of these points, in the sense that it has a single pole and
in consequence there is a propagating Dirac fermion; however, the residue matrix at each pole
is different and corresponds to a change in the sign of the corresponding γ matrices. Indeed,
the residues are such that if we use γ0 and γ1 for the matrices at (0, 0), then we have γ0 and
−γ1 at (0, π),−γ0 and γ1 at (π, 0) and (−γ0,−γ1) at (π, π). Now, any one of these four
sets of γ matrices yields the same answer for the gauge invariant mass, since they amount
to equivalent representations of the Dirac algebra. In this case, since the propagator contains
both chiralities, the unwanted particles (‘doublers’) are also vector like.

Then, when m = 0, an application of the Gauss law on the torus, with the circles around
the four poles of the propagator excluded, yields four times the contribution of a single Dirac
fermion, since the gauge invariant mass has the same sign for each doubler. This is just a
manifestation of the ‘doubling’ problem of lattice fermions, related to the Nielsen–Ninomiya
theorem [11], in this case applied for a magnitude which depends only on the real part of the
effective action.

Thus
[
m2
G

]
lattice = 4

e2

π
. (45)

4.2. QED3 at finite temperature

Another circumstance where the structure of momentum space allows for the emergence of a
non-trivial gauge invariant mass, is the case of QED in 2 + 1 dimensions at finite temperature in
the presence of ‘large’A0 field configurations [12]. Parity conserving versions of QED(2 + 1),
like the model introduced by Dorey and Mavromatos [13], have been extensively studied as
quantum field theory models at finite temperature [12]. Most of what we shall say about this
here, however, holds true for both the parity conserving and the parity breaking cases.



8724 C D Fosco et al

We now discuss QED(2 + 1) with regard to only one of its aspects, namely, its gauge
invariant mass. We recall that in finite temperature quantum field theory, Lorentz invariance
is lost. Indeed, in the Matsubara formalism, which we shall adopt, the time coordinate runs
from 0 to β = 1

T
. This lack of Lorentz invariance implies that one shall, in principle, have

different masses for the spatial and temporal components of the gauge field. Namely, the
natural extension of (2) to this case would be

Lm = 1
2m

2
elA0(x, τ )A0(x, τ ) + 1

2m
2
magAj(x, τ )δ

⊥
jkAk(x, τ ) (46)

where δ⊥
jk = δjk − ∂j ∂k

∂2 is the transverse Kronecker δ for the two spatial dimensions, and τ is
the imaginary time. The two componentsmel and mmag are the electric and magnetic masses,
which can, of course, be different for T �= 0. These two masses play the role of components
of a ‘mass tensor’ for Aµ. We shall deal exclusively with the magnetic mass. It is not difficult
to apply a similar derivation to the one used for the T = 0 case, to obtain

m2
mag = −ie2 1

β

+∞∑
n=−∞

∫
d2p

(2π)2
∂

∂pj
Tr

[
γjSF (p, n)

]
(47)

where the sum runs over the Matsubara frequencies ωn = (2n + 1)πT and SF is the finite
temperature fermion propagator.

For the free, massless fermion propagator in the presence of a large A0, we have [12]

SF (p, n) = 1

iγ0ω̃n + iγkpk
(48)

where ω̃n = ωn + eA0. A0 is assumed to be constant, a fact which can always be achieved
by a small gauge transformation. The value of this constant is of course determined by the
quantity

∫
dτA0(τ ), where A0(τ ) is an arbitrary time-dependent configuration. Then

m2
mag = −ie2 1

β
Tr(I)

+∞∑
n=−∞

∫
d2p

(2π)2
∂

∂pj

pj

p2 + ω̃2
n

(49)

which looks like a series of (1 + 1)-dimensional contributions. Of course, whenever
ωn = −eA0, we have a non-vanishing contribution, of the same kind as those appearing
in 1 + 1 dimensions. That condition on A0 amounts to

e

∫ β

0
dτA0(τ ) = (2n + 1)π. (50)

Thus, we may write the result for m2
el as

m2
mag = e2

2πβ
Tr(I)

+∞∑
n=−∞

δ

[
e

∫ β

0
dτA0(τ ), (2n + 1)π

]
(51)

where we have used the notation δ[a, b] to denote the function which is equal to 1 when a = b,
and δ[a, b] = 0 when a �= b (a and b are not integers, in general).

The β dependence should have been expected by dimensional analysis, since in 2 + 1
dimensions, e2 has the units of a mass. Regarding the existence of particular points where the
magnetic mass is generated, the physical reason for that is that when the condition for A0 is
met, dimensional reduction occurs because there is a massless mode, and the reduced model
is then tantamount to a Schwinger model.
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5. Conclusions

In this work, a useful momentum space representation for the gauge invariant mass has been
obtained and applied to different situations, namely, massless and massive QED in 1 + 1
dimensions, the (1 + 1)-dimensional square lattice and QED3 at finite temperature. The key
ingredient for this representation is the validity of gauge invariance expressed by the Ward
identity, and of course its consistency with the dynamics defined by the Schwinger–Dyson
equations.

It should be clear from (24) that the value ofm2
G depends entirely on the infrared behaviour

of the fermion propagator, resulting indeed from the infrared dynamics. In particular, the
momentum representation for the gauge invariant mass in 1 + 1 dimensions turns out to be
related to the chiral anomaly. This relationship suggests thatmG should possess some kind of
stability against perturbations. For instance, the introduction of a current–current interaction
amounts to a smooth change [9] of the coefficient A(0) in equation (34), while preserving the
vanishing of B(p) = 0. This means that, apart from a normalization factor, m2

G is still finite
and non-vanishing.

A further comment we would like to add, and which is related to the previous discussion
is one concerning the meaning of formula (24). The main difference between our momentum
space representation for mG and similar representations [1, 2, 4] lies in the presence of the
factor A(0). This is related to the fact that in our case the formula cannot be written just in
terms of the SU(2) projection of the fermion propagator, as in the other cases. Therefore,
when including interactions, mG is not protected from being renormalized. In this sense,
the quantized gauge invariant mass of the (1 + 1)-dimensional Schwinger model is not stable
against interactions. In the present case, what is stable against perturbations is the ratio
between mG and Z2. If perturbations are included in the massive Schwinger model or in the
massless case, mG will however still be mG = 0 or mG �= 0, respectively.

We finish with a comment and outlook on the possible implications of our results to
higher dimensional systems at zero temperature, where dimensional reduction does not occur.
It should be noted that the main difficulty is the fact that m2

G, as given by (24), seems not
to be interesting for the higher dimensional case, because of the IR behaviour of the fermion
propagators. One possible way out of this could be to consider non-standard fields such as, for
instance, dipole fields. This, however, should require a re-derivation of the main results, since
the structure of the model will, in principle, be different from the standard minimal coupling
case. Results on this will be reported elsewhere.
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